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(57) ABSTRACT

Embodiments of the invention are directed to a computer-
implemented system and method of identifying human
settlements in imagery comprising receiving an image,
segmenting the image into a plurality of superpixels, ana-
lyzing statistical parameters of at least two or more of the
plurality of superpixels, where the statistical parameters
includes entropy data, and identifying groups of superpixels
having at least a predetermined cluster density and a pre-
determined entropy. Some embodiments further include
clipping the image to only include the identified groups of
superpixels having the predetermined cluster density and
entropy, analyzing statistical parameters of the clipped
image, analyzing geometric factors of the clipped image,
determining one or more settlements based on the statistical
parameters and geometric factors of the superpixels, and
identifying a shape and area of the one or more settlements
based on the statistical parameters and geometric factors of
the clipped image.
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1
AUTOMATED FEATURE EXTRACTION
FROM IMAGERY

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application claims priority to U.S. Provisional
Application No. 61/941,361, filed Feb. 18, 2014, which is
incorporated herein by reference in its entirety for all pur-
poses.

BACKGROUND

The present invention relates to efficiently extracting
features from images, and in particular to automatically
recognizing settlements in the underdeveloped world from
satellite images.

Mapping human settlements and transportation networks
in developing countries is critical to the successful planning
and execution of global development and health programs.
Detailed settlement maps support logistics and planning
such as needed for the delivery of vaccines to rural areas and
also create a foundation for development of more accurate
population estimates critical to health programs.

Mapping human infrastructure in detail, including small
settlements, compounds and local transportation networks
using satellite imagery has been a labor intensive endeavor
that requires highly skilled image analysts. Manual settle-
ment extraction is also subject to certain analyst bias and
therefore is not necessarily a repeatable process. Advancing
the state of the science in automated techniques to capture
the detailed features is the key to cost, time and workforce
savings for governments of developing nations.

In image analysis, whether for satellite images or other
images, there are many methods for feature identification. A
first step in many methods is to break up the image into
segments. Standard segmentation workflows may result in
segments derived from rectangular grids, or superpixels.
Superpixels are groupings of pixels that are similar insame
spectral characteristics (color or shade), and/or being in
proximity to each other. There are a number of algorithms
for generating superpixels. The invention as described
below in one embodiment adapts an existing algorithm,
Simple Linear Iterative Clustering (SLIC), as described in
“SLIC Superpixels Compared to State-of-the-art Superpixel
Methods,” by Radhakrishna Achanta, Appu Shaji, Kevin
Smith, Aurelien Lucchi, Pascal Fua, and Sabine Siisstrunk,
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1,
DECEMBER 2011. SLIC uses k-means clustering, which
basically clusters similar pixels or superpixels based on how
close they are to each other.

SUMMARY

In one embodiment, the present invention improves the
speed, efficiency and accuracy of feature extraction by using
entropy to generate superpixels in an image. Entropy is
related to the amount of variation between pixels in an area.
Entropy can be used in addition to spectral matching or other
statistics to generate superpixels. By generating and tagging
superpixels defined using entropy, likely settlement areas are
identified, eliminating the need to process other areas of the
image, thus improving processing speed and reducing the
amount of required memory.

The way entropy is used can depends on the resolution of
an image and the scale at which extraction is performed. At
a low image resolution, and large scale a settlement can have
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high entropy due the variation between buildings, fences and
the ground and vegetation inbetween them. A forested,
grassland or desert area, on the other hand, may be more
consistent and thus would have low entropy. Thus, high
entropy can be used to identify possible settlements. Once a
settlement is identified, a higher resolution image examined
at a small scale may have lower entropy for buildings and
other man-made structures, and higher entropy for natural
features, such as trees. The roof of a building would be a
consistent shade or color, while a tree could have leafly and
less-leafy areas, for example (in addition to generally have
a round, rather than polygon, shape).

Embodiments of the present invention have been tested
and shown to work on panchromatic (black & white/gray-
scale) images for settlements in undeveloped, semi-arid
areas. The techniques of these embodiments can also be
applied to color images as well as infrared images.

In one embodiment, once superpixels are identified using
entropy, superpixels are clustered together using an ESeg
method based loosely on SLIC. Instead of grouping super-
pixels based on distance, they are grouped based on a “best
match” method, considering both spatial and spectral close-
ness.

In one embodiment, a four step process is used to identify
settlements. (1) A Feature Localization step identifies clus-
ters of high-entropy superpixels, which are likely to be
settlements. Highly dispersed high-entropy superpixels and
accompanying low-entropy superpixels are unlikely to be
settlements. Compact clusters of high entropy superpixels
with adjacent low energy superpixels are mode likely to be
settlements. These latter cluster types are clipped from the
image and separately examined. This significantly reduces
the amount of the image that needs to be processed at a
higher resolution. (2) A Feature Identification step confirms
that the superpixel is indeed a settlement by using statistical
parameters and geometric factors to identify man-made
features in the superpixels (e.g., rectangular shapes for
buildings and linear shapes for fences). (3) A Coarse Feature
Description step is performed once a superpixel has been
confirmed to be a settlement in step 2. Cluster and shape
analysis are used to identify the settlement boundaries. Here
again, entropy based cluster analysis is used, with low
entropy indicating a single structure. (4) Fine Grained Fea-
ture Description is then performed to identify individual
buildings, fences and other structures within the settlement.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a simplified diagram of the phases in the
feature extraction process, according to certain embodi-
ments of the invention.

FIGS. 2A-C illustrate image segmentation results using
imagery, grid segmentation, and superpixel segmentation,
according to certain embodiments of the invention.

FIG. 3 illustrates the relationship between entropy and
image content, according to certain embodiments of the
invention.

FIG. 4 depicts the relationship between values of the
Local Moran’s 1 Spatial Autocorrelation process and clus-
tering.

FIG. 5 depicts the location of possible settlements as
polygons, which can be iteratively examined in each scene
to evaluate more closely, according to certain embodiments
of the invention.

FIGS. 6A-C depicts a non-settlement, settlement, and
compound fence regions and their associated statistics,
according to certain embodiments of the invention.
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FIG. 7 depicts a simplified flow diagram showing a
coarse-grained feature description process, according to
certain embodiments of the invention.

FIG. 8 depicts a simplified flow diagram illustrating
aspects of using shape descriptors in a settlement detection
process, according to certain embodiments of the invention.

FIG. 9 depicts another simplified flow diagram illustrating
aspects of using shape descriptors in a settlement detection
process, according to certain embodiments of the invention.

FIG. 10 illustrates a computer system for performing
aspects of automated feature extraction from imagery,
according to certain embodiments of the invention.

FIG. 11 depicts a simplified diagram of a distributed
system for providing a system and method for performing
aspects of automated feature extraction from imagery,
according to certain embodiments of the invention.

FIG. 12 is a flowchart of the ESEG method which
improves on the SLIC method of clustering superpixels.

FIGS. 12A-E are expanded flowcharts of the elements of
the flowchart of FIG. 12.

DETAILED DESCRIPTION

Certain embodiments of the invention relate generally to
feature identification and extraction from imagery.

Certain embodiments of the invention include a capability
to create a settlement feature base map for satellite imagery
through a highly-scalable, automated feature extraction pro-
cess. Some novel features described herein include (1)
Multi-phase feature extraction; (2) Leveraging Information
Theory for image processing; (3) Object-based image analy-
sis; and (4) a Cloud-based (Internet) feature extraction
pipeline. These techniques, taken alone or in combination,
allow for the automatic extraction and identification of e.g.,
settlements from aerial imagery. These applications can be
expanded to include the automatic extraction of undevel-
oped world human infrastructure, and potentially other
infrastructure around the world. These practices could then
be leveraged to create infrastructure basemaps for develop-
ing nations.

Certain embodiments of the invention are guided by
certain principal requirements that include: (1) Extracting
human settlements from satellite imagery, (2) Extracting
information for population estimation, and (3) using a cloud-
based, scalable, automated feature extraction pipeline. A
settlement can be defined as a significant grouping of
compounds. Compounds in the developing world are typi-
cally created from local organic and non-organic materials
and provide minimal shelter for its inhabitants. These com-
pounds have a signature appearance that includes an
approximately square fence line around the compound and
round and/or rectangular huts inside the compound. For
information extraction, the information required depends on
a population estimation algorithm but can include the exis-
tence and location of a settlement, the area and shape of the
settlement, or the configuration of buildings within com-
pounds and the relationships between compounds within the
settlement. A cloud-based feature extraction pipeline can
enable feature extraction across a large region at a fraction
of the time of manual feature extraction.

In some embodiments, tests were done on imagery from
a panchromatic sensor was used having a 0.5 m ground
sample distance, meaning each pixel records light from a
patch on the ground approximately 0.5 mx0.5 m in size.
However, the techniques of these embodiments can also be
applied to color images as well as infrared or other images.
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In addition to landscape images, the embodiments could be
applied to medical scans, security images and other images.
For the use of entropy to distinguish features, those images
having that have features of interest with high entropy could
benefit from these processes.

Multi-Phase Feature Extraction

Automated extraction of relatively small features from
high-resolution satellite imagery covering large regions can
be complicated by the huge number of pixels that must be
analyzed. This immense volume of pixels and scenes to
search through does not make itself amenable to intense
computation on each area of the scene. Therefore, a divide
and conquer strategy is appropriate. In this example, to
enable fast and accurate feature extraction across large
regions of Nigeria, feature localization strategy was
employed through a multi-phase feature extraction process.

FIG. 1 depicts a simplified diagram of the feature extrac-
tion process, according to certain embodiments of the inven-
tion. In the first phase, Feature Localization, the satellite
imagery catalogue is analyzed to locate regions where the
probability for settlements is highest. These images are
examined at a low resolution, or with groups of pixels
considered as one for examination. These areas are then
“clipped” from the larger image for further processing at a
higher resolution, where single pixels or smaller groups of
pixels are examined. This can help focus the search for
settlements and reduces the amount of data that must be
processed in the following steps. Next, in the Feature
Identification section, analysis on all of the possible settle-
ment regions identified are performed to determine which
regions actually represent settlements. In the Coarse-grained
(low resolution) Feature Description section, information is
extracted about the identified settlement that is useful for
population estimation, such as the area and shape of the
settlement. Finally, the settlement in the Fine-grained Fea-
ture Extraction phase is analyzed to identify and estimate the
number of buildings and compounds within the settlement.
This provides alternative data for population estimation
algorithms.

Object-Based Image Analysis

The four feature extraction phases in FIG. 1 incorporate
many different techniques, all of which are enabled by
object-based analysis. Object-based analysis, as opposed to
pixel-based analysis, uses groups of pixels, called “original
objects,” as the basis for analysis. Compared to pixel-based
analysis, object-based analysis can offer higher feature
detection accuracy, reduce processing time, and introduce
the ability to employ a wide-array of vector-based geopro-
cessing tools that are already available.

To enable object-based analysis, images are segmented,
and then spectral and entropy values for each segment is
used as a means to separate original objects from back-
ground. The segmentation techniques used in this work are
rectangular grid and superpixel segmentation. The results of
these image segmentation techniques on an image of a
settlement in Kano state of Nigeria are shown in FIGS. 2A-C
(these images were obtained after going through the earlier
phases to focus on a likely settlement). Grid segmentation is
achieved by forming a grid of a desired size and grouping
together pixels that fall in the same grid cell. While grid
segmentation is quick and easy to employ, it only considers
pixel position when forming the original objects. To form
original objects that also reflect the image content, super-
pixel segmentation may be used.

According to certain embodiments of the invention,
superpixel segmentation involves an iterative pixel cluster-
ing process followed by a cluster consolidation and analysis
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of resulting clusters to lower false positives. Initial clusters
of pixels are seeded throughout the image at regular inter-
vals corresponding with a grid. Seeding involves arbitrarily
selecting a particular pixel or group of pixels as the clusters
to start with, such as a cluster or group of pixels at the center
of'each square of a grid. Those clusters are iteratively refined
such that pixels are grouped together by spatial and spectral
similarities. However, the resulting clusters of pixels tend to
be not be fully contiguous in a spatial sense. In the cluster
consolidation process, each spatially distinct grouping of
pixels within each cluster is treated as a separate cluster. The
smallest clusters are consolidated with spatially adjacent
clusters. The consolidation process considers spatial and
spectral similarities when choosing pairs of adjacent clusters
to join. The resulting, consolidated clusters are called super-
pixels. As can be seen in FIGS. 2A-C, the boundaries
between superpixels nicely follow the outlines of the settle-
ment. Therefore, superpixel segmentation shows great
promise for identifying settlement boundaries.

In summary, according to certain embodiments, it is not
the boundaries that are updated; rather, on each K-Means
iteration, the members of each superpixel are updated pixel
by pixel, with no regard for contiguity specifically. At times,
while running the K-Means portion of the algorithm, the
superpixels can be highly dis-contiguous. For visualization
purposes, one can think of dipping a paintbrush in paint, then
flinging it at a target on the wall. The paint may tend to
mostly cover that target, but there will be non-contiguous
spots of paint all around, still mostly centered around the
target. At each K-Means iteration, target locations are
refined and paint is re-flung more optimally (so to speak),
but not necessarily with any contiguity. In one embodiment,
a novel Enhanced Segmentation (ESEG) tool is using to
cluster the superpixels, improving on the prior SLIC process
reference in the background. ESEG is described below with
respect to FIGS. 12-12E. It is ESEG’s enhancements relative
to SLIC that relate to, after completing all K-Means itera-
tions, cleaning up those spots and produce nice, coherent
clusters (e.g., superpixels).

Cloud-Based Feature Extraction Pipeline

Because the processing of imagery is intensive relative to
standard vector-based GIS (Geographic Information Sys-
tem) processing, a scalable version of the automated feature
extraction pipeline in the cloud has been developed. The
advantage of this is its flexibility: as the processing needs
throughout the pipeline change, the cloud seamlessly adapts
with dynamic resource allotment. Additional computing
instances can be replicated and increased on demand and,
when they are not needed, shut down. This flexibility means
that whether the processing is on the local, state, country or
continent scale, the same setup can handle the task. In
addition, completion timelines can be shortened simply by
adding more cloud computing resources.

Feature Localization

In certain embodiments, Feature Localization is the first
process in the feature extraction methodology. Localization
means locating regions with a high likelihood of represent-
ing settlements. In this phase, polygons are drawn around
those areas that are possible settlement locations (an
example is shown in FIG. 5, discussed below). The imagery
at these locations is then clipped for further processing in the
Coarse-grained Feature Description phase. Although a
coarse (low resolution) then fine (high resolution) process is
described herein, multiple stages in between could alter-
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nately be used depending on the overall size of the area
being examined.

An embodiment was tested on satellite images of Nigeria.
In this example (Nigeria), settlement regions are typically
marked by a dense arrangement of features, such as build-
ings and fences, against a relatively uniform background.
Therefore, there is a greater variation in the intensity values
of pixels in a settlement region than in non-settlement
regions. This increase in variability, and associated unpre-
dictability, called entropy, is a valuable parameter for local-
izing settlements. The relationship between entropy and
image content is illustrated in FIG. 3. Entropy increases as
the image content changes from a single intensity value to
random static. While compounds contain regions of small
intensity variations, such as grass fields, they also contain
regions of large intensity variations, such as buildings and
their associated shadows. The entropy of these compound
regions is high.

In this particular non-limiting embodiment, each of the
images over the Kano state of Nigeria were segmented using
a 20 mx20 m grid. When the entropy of the grid cells is
visualized over a scene, settlements of all sizes can be
visualized quite easily by the clusters of bright red pixels.
Red pixels (or any suitable assignable color) are used to
indicate the highest entropy areas in the scene. The test was
able to discern between settlements, which had bright clus-
ters of high value entropy. Clusters without these same high
entropy values were confirmed by human observation to not
be settlements in the test, and were natural features, such as
a raised area of rock. This localization method is sensitive
enough to able to correctly discern these types of differ-
ences.

To localize settlements using the entropy map, cluster
analysis can be used to identify significant clusters of
high-entropy cells. One tool that can be used for the cluster
analysis is Moran’s I, a Spatial Autocorrelation tool that is
part of Esri’s ArcGIS Spatial Statistics toolbox available at
esri.com. Moran’s [ can provide a way to determine if
high-entropy objects in a scene are clustered in large clus-
ters, randomly placed, or highly dispersed, as depicted in
FIG. 4.

In a test of one embodiment, regions likely to be settle-
ments, identified as highly clustered, high-entropy objects,
were indicated by pink polygons. To examine the correlation
between the possible settlement locations and actual loca-
tions hand digitized from the same image, the actual hand
digitized interpretation of settlement locations was overlaid
on the automated selection of the possible locations. There
was a high correlation between the automatically mapped
possible settlements and manually-extracted settlements,
demonstrating the efficacy and accuracy of the automatic
settlement localization process. This settlement localization
process also identified some possible regions that were not
present in the manually extracted dataset. These false posi-
tives are filtered out in a Feature Identification phase. The
final step in this phase is clipping the image using each of the
possible settlement polygons, as shown in FIG. 5. Each of
these clipped images will be examined further in the Feature
Identification phase.

Feature Identification

In the Feature Identification phase, the possible settlement
region is analyzed in detail to determine the existence of a
settlement within the region. This is achieved by analyzing
each image clip (or some subset thereof) created in the
Feature Localization phase. To make a determination as to
the existence of a settlement, a combination of statistical
parameters (e.g., contrast, mean, mode, median, standard
deviation, and entropy) and geometric factors (e.g., edge
detection) can be used. In addition, man-made features tend
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to cause greater contrast variations and exhibit greater
standard deviations than natural features. FIGS. 6 A-C show
images highlighting a non-settlement region (FIG. 6A), a
settlement region (FIG. 6B), and a compound and fence/tree
region (FIG. 6C), along with the statistics calculated from
each region. Maximum and minimum values are indicated.
These statistical parameters can be used as part of the
evidence to determine the existence of a settlement.
Feature Description (Coarse Grained)

In the Coarse-grained Feature Description step, the shape
and area of each settlement (or some subset thereof) is
identified. Both of these descriptors can be determined from
the settlement boundary. The input to the Coarse-grained
Feature Description process, as shown in FIG. 7, is a dataset
of' the settlements identified in the Feature Identification step
and the image segments around these settlements. Cluster
analysis and shape analysis is performed on the image
segments and the results are combined to identify the
settlement boundaries.

To extract the initial settlement boundaries, we perform
entropy-based cluster analysis using the same technique as
in Feature Identification to identify the settlement regions.
The settlement boundary extraction results using grid seg-
ments and superpixel segments were compared in a test to
manual extraction. The images showed that the grid-based
and superpixel-based approaches both roughly estimate the
settlement area. Superpixels, however, provide superior
settlement boundary detection.

Feature Description (Fine Grained)

The area calculated by the Coarse-Grained Feature
Description phase is used as the beginning point of the
Fine-Grained Feature Description phase. A purpose of this
phase is to identity individual buildings and other objects in
a scene. As shown in FIGS. 2A-C, referenced above,
examples of features in the image include buildings, fences
and trees. At this level, the entropy of pixels showing the
roof of an individual building will be less than the entropy
of pixels for a tree (note that large trees can have the same
scale as a house). The building roof may be flat with a
consistent shade of gray or color, or it could be a peaked roof
where, depending on the sun, the two sides may be different
(e.g., one side in the sun and the other in the shade). In
combination with using entropy, shape matching can be
used. A round shape typically corresponds to a tree (but
could be a water tower or other man-made structure if there
is low entropy). Rectangular shapes may be buildings, while
long, narrow rectangular shapes can be fences.

Cascade Segmentation

To delineate individual buildings, a segmentation tech-
nique should be sensitive to the scale and boundaries that
differentiate these buildings from other objects within the
settlements. While single-scale superpixel segmentation
alone can achieve this if the exact value of the building is
used as the optimal superpixel size, this approach is guess-
work and does not always work. As the size of the average
superpixel decreases, the delineation of intensity differences
into segments that outline the smaller characteristics of the
houses becomes more evident. This is reasonable as details
on the houses are scale-dependent.

GIS can provide a foundation on which polygons from
one layer can be integrated intelligently in others. The result
is a segmentation process called “Cascade Segmentation”
that allows the better delineation of the smaller objects in the
scene. In cascade segmentation, the segmentation of the
scene could be directed in a way to delineate individual
compounds within the larger settlement. This would provide
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an integration of objects from several scale levels to create
more detailed objects in scenes.

Applications and Opportunities

The methods described herein can be applied to large
areas of the world and for many other landscape features in
addition to settlements. These methods and technologies can
be used to greatly improve the cost profile for mapping, for
example, cultural features and vegetation features of the
world. These methods, procedures, and techniques directly
support population modeling and can be further expanded to
support land use and land cover mapping. Efficient feature
extraction can be accomplished with robust cloud processing
to quickly adjust for the variations (extraction parameters) in
landscape and available imagery. The below 4 steps illus-
trate a generalization of the workflow for production style
settlement extraction, according to certain embodiments of
the invention. This workflow is also applicable to other
automated extraction problems.

Step 1: Define Area Of Interest (AOI) and initial assessment.
Step 2: Obtain extraction parameters for a parameter file.

Step 3: Validate extraction and feedback adjustments to step
2.

Step 4: Process in the cloud and prepare for delivery.
Approach to Environmental Variability

New landscapes and new sensor types will be encountered
around the. In order to perform automated feature extraction
throughout the world, a production module to obtain settle-
ment extraction parameters for unique AOIs can be used.
This “parameter generator” can utilize a catalogue of ESRI
ArcGIS layers derived from high resolution maps. The maps
will provide the authoritative data determined to be useful
for creating the parameters for the extraction system. These
layers can include biomes, geology, and soils, among others.
Each class in a layer can lead to certain parameters for the
feature extraction process. For each unique layer combina-
tion, a parameter configuration can be built by combining
the parameter values determined for individual layer classes.

A parameter generator system can perform settlement
extraction cost-effectively on a per-order basis. When a
customer places an order, a shape file of the AOI can be
requested or created from their description and put in the
parameter generator system. The system then calculates
parameters for the AOI of interest. The resulting parameter
configuration file can then be used in the feature extraction
system to perform a run on some very small sample areas in
the AOL. The results of the extraction process would then be
visually inspected to see if the extractions that result would
meet customer requirements. If the sample results meet
requirements, the AOI can move to processing. The param-
eter can be stored for future reference. However, if the
results of the sample run do not meet the requirements of the
customer, the map inputs can be adjusted and the samples
re-evaluated. This is somewhat synonymous with calibrating
a camera. One difficult scenario would be a new area or one
where the data in the input layers were grossly inaccurate. In
this this instance, the configuration process and samples can
update the “authoritative” layers that we previously believed
to be “correct.”

An illustration of how this new technology can change
world mapping, Table 1 illustrates the physical provinces or
landscapes of Ethiopia that can be determined using the
embodiments described herein.
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Description and Area of Ethiopian Provinces

Area in

Province/Region sq. km.  Description

Northern Highlands 390363 montane forest elevations up to 4200 mAMSL

Ogaden 86277  dry flat arid featureless plain; little to no
vegetation

Eastern Plateau 114266  dry hilly arid; light vegetation

Southern Piedmont 39299  hilly dessicated land

Genale Dawa 47532 sparsely inhabited rocky outcrops; low
vegetation

Rift Valley 61239  trench with vegetation and good drainage

Borema 12803  mesa like plateaus; barren lowlands

East Sudanian savanna 52461  hot dry tropical savanna

Denakil 115542 desert volcanic rocks; inhospitable terrain

Central Highlands east 103391  rugged volcanic dessicated lands; vegetation
at higher elevs

Sahelian Acacia savanna 34036  hot dry with seasonal rainfall; grasses and
shrubs

Eastern Tablelands 71150  subequatorial climate; scrub and low
vegetation

total 1128359

Shape Descriptors for Settlement Detection

FIGS. 8 and 9 depict simplified flow diagrams illustrating
aspects of using shape descriptors in a settlement detection
process, according to certain embodiments of the invention.
In FIG. 8, an image is received (step 810) and segmented
(812) into superpixels. For each superpixel, the entropy and
pixel statistics are calculated (814).

In step 818, shape descriptors are calculated. One descrip-
tor is solidity (area of convex hull vs. area). Another is
elongation (fit to ellipse, ration of ellipse long dimension vs.
short dimension). Another is the normalized moment of
inertia (moment of inertia around centroid vs. moment of
inertia of same-area circle). Another descriptor is the ratio of
the perimeter of the superpixel to the perimeter of a same-
area circle. Additional descriptors can also be calculated.

In step 820, the superpixels are classified using (1) cluster
analysis results, (2) statistics, (3) entropy and (4) shape
descriptors. The classification can either be supervised (e.g.,
using support vector machines) or unsupervised (e.g.,
K-means). The classified superpixels are then merged based
on classification (822). The superpixels are examined based
on shape to determine polygons that correspond to settle-
ments, and ones that do not (824).

FIG. 9 illustrates an alternate process flow, with the shape
descriptors calculation coming later in the process. An
image is received (910) and segmented into superpixels
(912), and for each superpixel, the entropy and statistics are
calculated (914), and cluster analysis based on entropy is
done (916), as in FIG. 8. Next, however, the superpixels are
merged based on classification (918). A simplification and
generalization step based on the shape analysis of the
adjacent low entropy superpixel are considered to be settle-
ments or compounds. Next, shape descriptors are calculated
(922) and the superpixels are classified using the calculated
shape descriptors (924). Finally, the superpixels are exam-
ined based on shape to determine polygons that correspond
to settlements, and ones that do not
Sample Embodiments of System Architectures

FIG. 10 illustrates a computer system 2000 for perform-
ing automated feature (e.g., settlement) extraction from
imagery, according to certain embodiments of the invention.
The image processing, algorithms, and methods described
herein can be implemented within a computer system such
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as computer system 2000 shown here. Computer system
2000 can be implemented as any of various computing
devices, including, e.g., server(s), a desktop or laptop com-
puter, tablet computer, smart phone, personal digital assis-
tant (PDA), or any other type of computing device, not
limited to any particular form factor. Computer system 2000
can include processing unit(s) 2030, storage subsystem
2010, input devices 2050 (e.g., keyboards, mice, touch-
screens, etc.), output devices 2060 (e.g., displays, speakers,
tactile output devices, etc.), network interface 2070 (e.g.,
RF, 4G, EDGE, WiFi, GPS, Ethernet, etc.), and bus 2005 to
communicatively couple the various elements of system
2000 to one another.

Processing unit(s) 2030 can include a single processor,
multi-core processor, or multiple processors and may
execute instructions in hardware, firmware, or software,
such as instructions stored in storage subsystem 2010. The
storage subsystem 2010 can include various memory units
such as a system memory, a read only memory (ROM), and
permanent storage device(s) (e.g., magnetic, solid state, or
optical media, flash memory, etc.). The ROM can store static
data and instructions required by processing unit(s) 2030
and other modules of the system 2000. The system memory
can store some or all of the instructions and data that the
processor needs at runtime.

In some embodiments, storage subsystem 2010 can store
one or more of data or software programs to be executed or
controlled by processing unit(s) 2030, such as image data
2012, segmentation pattern data 2014, or pixel characteristic
data 2016, as further described above with respect to FIGS.
1-4. As mentioned, “software” can refer to sequences of
instructions that, when executed by processing unit(s) 2030,
cause computer system 2000 to perform certain operations
of the software programs. The instructions can be stored as
firmware residing in read only memory and/or applications
stored in media storage that can be read into memory for
processing by processing unit(s) 2030. Software can be
implemented as a single program or a collection of separate
programs and can be stored in non-volatile storage and
copied in whole or in part to volatile working memory
during program execution. From storage subsystem 2010,
processing unit(s) 2030 can retrieve program instructions to
execute in order to execute various operations (e.g., inter-
polations) described herein.
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It will be appreciated that computer system 2000 is
illustrative and that variations and modifications are pos-
sible. Computer system 2000 can have other capabilities not
specifically described here in detail (e.g., GIS technologies).
Further, while computer system 2000 is described with
reference to particular blocks, it is to be understood that
these blocks are defined for convenience of description and
are not intended to imply a particular physical arrangement
of component parts. Further, the blocks need not correspond
to physically distinct components. Blocks can be configured
to perform various operations, e.g., by programming a
processor or providing appropriate control circuitry, and
various blocks might or might not be reconfigurable depend-
ing on how the initial configuration is obtained. Embodi-
ments of the present invention can be realized in a variety of
apparatus including electronic devices implemented using
any combination of circuitry and software.

Aspects of system 2000 may be implemented in many
different configurations. In some embodiments, system 2000
may be configured as a distributed system where one or
more components of system 2000 are distributed over one or
more networks in the cloud (remote Internet servers). FIG.
21 depicts a simplified diagram of a distributed system 2100
for providing a system and method for performing auto-
mated feature (e.g., settlement) extraction from imagery,
according to an embodiment of the invention. In the embodi-
ment depicted in FIG. 21, system 2100 is provided on a
server 2102 that is communicatively coupled with one or
more remote client devices 2110, 2120, 2130 via network
2106 (e.g, a cloud pipeline).

Network 2106 may include one or more communication
networks, which could be the Internet (cloud), a local area
network (LAN), a wide area network (WAN), a wireless or
wired network, an Intranet, a private network, a public
network, a switched network, or any other suitable commu-
nication network or combination thereof. Network 2106
may include many interconnected systems and communica-
tion links including but not restricted to hardwire links,
optical links, satellite or other wireless communications
links, wave propagation links, or any communication pro-
tocol. Various communication protocols may be used to
facilitate communication of information via network 2106,
including but not restricted to TCP/IP, HTTP protocols,
extensible markup language (XML), wireless application
protocol (WAP), protocols under development by industry
standard organizations, vendor-specific protocols, custom-
ized protocols, and others as would be appreciated by one of
ordinary skill in the art. In the configuration depicted in FIG.
11, aspects of system 800 may be displayed on any of client
devices 2110, 2120, 2130.

In the configuration depicted in FIG. 11, system 900 is
remotely located from client devices 2110, 2120, 2130. In
some embodiments, server 2102 may perform the methods
of determining (or interpolating) a population over a geo-
graphic area described herein. In some embodiments, the
services provided by server 2102 may be offered as web-
based or cloud services or under a Software as a Service
(SaaS) model, as would be appreciated by one of ordinary
skill in the art.

The cloud servers in one embodiment provide multiple
instantiations of the processing program, or elements of the
processing program, on one or more servers. This allows the
parallel processing of different image segments to speed the
processing of a target geographic area. Superpixels along a
segment border can be referred to another instantiation, or
combined with a current instantiation, for processing.
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Instantiations that complete their processing can be closed
down. Instantiations for segments with few settlements will
complete their processing earlier. This provides an efficient
use of computer resources, in addition to increasing the
speed of the overall processing. The resulting process
images can be stitched together for a complete processed
image. The clipped images can be mapped to an overall, low
resolution, image of the entire target geographic area.
Enhanced Segmentation

Automatically detecting objects, or features, in imagery is
important in a wide array of applications. However, analysis
conducted in a pixel by pixel manner can be complicated and
difficult to generalize. Analyzing imagery at a higher level,
by examining groups of pixels rather than individual pixels,
improves the ease of performing feature detection.

In image segmentation, an image is divided into discrete
areas that are self-similar by some measure. Each of those
areas of similarity can be referred to as a “superpixel”, a
grouping of pixels.

ESEG (Enhanced Segmentation) according to an embodi-
ment of the present invention is an image segmentation
algorithm. A ‘Segment Raster’ geoprocessing tool imple-
ments the ESEG algorithm, produces statistics for each
grouping of pixels, and offers an option to divide the input
image using a simple grid as an alternative to segmentation.

FIGS. 12-12E show the K-Means iterations in steps
1201-1205 in a series of flowcharts that enable one to
visualize the operation of the ESEG algorithm. The first
flowchart (FIG. 12) offers a high level view, and subsequent
flowcharts (FIG. 12A_F) expand on particular portions of
the algorithm.

SLIC Overview

SLIC is a precursor to ESEG (Enhanced Segmentation),
which improves upon SLIC. As an application of K-Means,
SLIC iteratively assigns image pixels to superpixel clusters
based on a measure of the Euclidean distance between each
pixel and each superpixel center. Where N is the number of
image bands, each pixel or superpixel is characterized by a
vector of length N+2 consisting of one value per image band
as well as weighted X and Y spatial values derived from the
pixel coordinates. The weighting of the X and Y values is
controlled by a “regularization”, or compactness parameter.

Initially, superpixel centers are “seeded” at regular spatial
intervals throughout the image, in grid fashion. This spatial
interval is controlled by a “side length” parameter. The
vector characterizing each initial superpixel is derived from
the image band values at its center pixel as well as the
coordinates of that center pixel.

At each K-Means iteration, each superpixel is assigned
those image pixels within its spatial search area for which
that superpixel is the least “distant” superpixel. The search
area is a square with length equal to the value of the side
length parameter multiplied by four, plus one, with the
superpixel’s spatial center at the center of the square.
Subsequently, within each iteration, the spectral/spatial vec-
tor characterizing each superpixel is recalculated as the
mean of its constituent pixels.

The number of K-Means iterations is generally set to a
fixed value that is adequate to allow the superpixels to
converge, that is, to change little from iteration to iteration.
ESEG can employ 10 K-Means iterations in its implemen-
tation.

Once the K-Means iterations are complete, superpixels
lacking spatial contiguity are divided. Each contiguous unit
is “walked” until all of its pixels have been visited, and is
then treated as a separate superpixel. Further, superpixels
that contain too few pixels to meet a minimum size threshold
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are consolidated with neighbors. The ESEG implementation
can use a minimum size threshold equal to one fourth the
area of each initial superpixel, or one fourth of the square of
the side length parameter.

SLIC Superpixel Connectivity Enforcement

A SLIC method is described in Radhakrishna Achanta,
Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Stsstrunk, SLIC Superpixels, EPFL. Technical
Report 149300, June 2010 (“Achanta”). Achanta states that
at the conclusion of the K-Means iterations, “a few stray
labels may remain, that is, a few pixels in the vicinity of a
larger segment having the same label but not connected to
it.”

Running SLIC and ESEG on near-nadir aerial and satel-
lite imagery, however, we observe that the number of
dis-contiguous superpixel areas is typically quite substantial,
easily a couple of orders of magnitude greater than the initial
number of superpixels.

For example, running an implementation of SLIC on a
1024x768 crop of an aerial image with a superpixel side
length of 100 pixels and the regularization parameter set to
the typical setting of 10.0, there are 70 initial superpixels.
However, at the conclusion of 10 K-Means iterations, the
SLIC “‘connectivity enforcement” function reports encoun-
tering 10,637 dis-contiguous areas stemming from the 70
superpixels.

Further, we find that as those dis-contiguous areas are
turned into new superpixels, the result is a large number of
superpixels that are too small to be retained, that is, they do
not meet the minimum size threshold and need to be
consolidated with larger superpixels. The reason for the size
threshold is to keep the superpixels roughly proportional in
size to the configured side length and thus relevant. In the
above example, of the total 10,707 distinct superpixel areas,
10,610 are removed because of their small sizes.
Treatment of Superpixels Requiring Consolidation

The manner in which the smallest superpixels are con-
solidated markedly affects the quality of the final results.
ESEG significantly improves upon SLIC in this area.

SLIC uses what we refer to as a “brute force” consolida-
tion method. Each too-small superpixel is arbitrarily
assigned to an adjacent superpixel, with no consideration for
which neighbor has the greatest spectral similarity to itself.

ESEG, on the other hand, selects the most similar super-
pixel neighbor in each successive consolidation operation.
We refer to this as the “best match” method. Better corre-
spondence with boundaries in the input image is achieved.
“Best Match” Superpixel Consolidation Algorithm

The Achanta SLIC “connectivity enforcement” routine
performs the dual functions of dividing dis-contiguous
superpixels and consolidating small superpixels. ESEG, on
the other hand, can do this in multiple stages. This portion
of the ESEG algorithm differentiates it from the Achanta
SLIC implementation and involves the following steps:

1. Enforce the connectivity of superpixel areas by creating

a new superpixel for each dis-contiguous area. All
superpixels are now contiguous.

2. Compute the spectral and spatial center of every
superpixel.

3. Make a pass through all pixels in the image, identifying
pixels belonging to small superpixels that are in need of
consolidation due to their sizes.

4. For each small superpixel, visit and make a record of
all constituent pixels and all neighboring superpixels.

5. For each small superpixel, for each neighboring super-
pixel, compute a spatial/spectral distance between the
respective superpixel centers.
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6. For each small superpixel, consolidate with the least
“distant” neighbor. This is done by iterating through the
list of all constituent pixels and re-assigning them to
that neighbor.

This consolidation algorithm is local in nature and scales
approximately linearly with respect to image size. It should
be noted that references to “all” in the steps above are one
example, and some embodiments may employ smaller sub-
sets of the total amount.

Enhancements to Support Tiling

Processing large, multi-band raster data sets can be
memory intensive. ESEG includes enhancements to support
tiling, so that at any given time, only a portion of the raster
is loaded into memory and processed to produce polygons.
This is done in a manner that is virtually seamless, produc-
ing superpixels that are not noticeably affected by tile
boundaries. ESEG is thus able to produce excellent results
while maintaining a relatively modest memory footprint.
Prerequisite: NoData Handling

ESEG’s tiling approach requires that NoData areas be
skipped in performing segmentation. ArcGIS allows raster
datasets to be defined as having a NoData value, the standard
way of indicating that a given raster cell should be consid-
ered to not contain any data. In assigning pixels to super-
pixels, ESEG omits those with NoData values. Output
polygons are created for “data” areas of the raster, a feature
not found in SLIC.

Further, when seeding the initial superpixels, no seed is
assigned to any cell location with a NoData value. As this
has the potential to leave certain areas of a given raster with
insufficient seeding, ESEG can verify that every pixel is
within reasonable proximity of at least one initial superpixel
seed, then creates additional seeds where necessary.

Tiling Strategy

ESEG can handle tiling in a seamless manner because it
“cuts” along superpixel boundaries near the edges of each
tile, then later refills those areas when processing adjacent
tiles. Cutting along superpixel boundaries is important, as
cutting along strict tile boundaries would produce artificially
straight superpixel edges unsuitable for much analytical
work.

ESEG tiles each input raster in a left to right and up to
down manner, using the same size for each tile. At the
conclusion of processing each tile, pixels near the bottom
and right edges of the tile are “cached” so that they can
potentially be reprocessed along with subsequent, adjacent
tiles.

Before this “caching” takes place, however, superpixels
abutting the right and bottom edges of the tile can be
removed, and are not included in the results of processing
that tile. ESEG instead processes the underlying pixels with
the subsequent, adjacent tiles.

In the right and bottom edge caches, ESEG sets NoData
values to avoid reprocessing pixels underlying retained (not
removed) superpixels; those pixels can be set to NoData in
the caches. Because the pixels underlying the removed
superpixels continue to have data values, they get repro-
cessed with the subsequent, adjacent tiles.

Superpixel Statistics

For the set of pixels in each superpixel polygon, for each
processed image band, the Segment Raster tool generates a
panel of statistics.

Within each superpixel, the minimum value, maximum
value, mean, median, mode, range, standard deviation, and
entropy statistics are calculated on all of the pixels in each
processed image band. The following formula can be used
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for the entropy value, where b (base) is 2, N is the number
of pixels, and n, is the number of pixels having a particular
intensity value:

1
log,N — ﬁz nilog,n;

Simple Grid-Based Superpixels

As an alternative to performing segmentation, the Seg-
ment Raster tool has an option to divide the image using a
simple grid. Pixel band statistics, as shown above, are
generated on the contents of each grid cell polygon.
ESEG Conclusion

Building on the linear complexity and good results
achieved by SLIC, ESEG goes a step further by offering
superior boundary adherence. The Segment Raster tool
which implements the ESEG algorithm offers the conve-
nience of results in the form of polygon features accompa-
nied by superpixel statistics as well as the option to divide
the image using a simple grid.

CONCLUSION

While the invention has been described with respect to
specific embodiments, one of ordinary skill in the art will
recognize that numerous modifications are possible. Thus,
although the invention has been described with respect to
specific embodiments, it will be appreciated that the inven-
tion is intended to cover all modifications and equivalents
within the scope of the following claims.

The above disclosure provides examples and aspects
relating to various embodiments within the scope of claims,
appended hereto or later added in accordance with appli-
cable law. However, these examples are not limiting as to
how any disclosed aspect may be implemented.

All the features disclosed in this specification (including
any accompanying claims, abstract, and drawings) can be
replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus,
unless expressly stated otherwise, each feature disclosed is
one example only of a generic series of equivalent or similar
features.

Any eclement in a claim that does not explicitly state
“means for” performing a specified function, or “step for”
performing a specific function, is not to be interpreted as a
“means” or “step” clause as specified in 35 U.S.C. §112,
sixth paragraph. In particular, the use of “step of” in the
claims herein is not intended to invoke the provisions of 35
U.S.C. §112, sixth paragraph.

What is claimed is:
1. A computer-implemented method of identifying fea-
tures in imagery comprising:

receiving an image;

grouping selected pixels of the image into a plurality of
superpixels;

storing in memory a delineation of the superpixels;

analyzing at least two or more of the plurality of super-
pixels, the superpixels having an entropy, and the
analyzing including determining an indication of the
entropy;

storing in memory an indication of the amount of entropy
for each of the analyzed superpixels;

identifying superpixels based on an amount of entropy;

identifying clusters of superpixels based on both (1) the
indication of the amount of entropy for each of the
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analyzed superpixels and (2) superpixels that are proxi-
mate in location, to produce identified clusters;

storing data delineating the identified clusters in memory,
the clusters representing only a portion of the image;

determining whether a cluster density exceeds a prede-
termined value as a factor in identifying the clusters;

clipping the image to only include the identified groups of
superpixels having the predetermined cluster density
and entropy;

analyzing statistical parameters of the clipped image;

analyzing geometric factors of the clipped image;

determining one or more settlements based on the statis-
tical parameters and geometric factors of the superpix-
els; and

identifying a shape and area of the one or more settle-

ments based on the statistical parameters and geometric
factors of the clipped image.

2. The computer-implemented method of claim 1 wherein
the statistical parameters of the clipped image include one or
more of a contrast, mean, mode, median, standard deviation,
and entropy.

3. The computer-implemented method of claim 1 wherein
the geometric factors include edge detection.

4. The computer-implemented method of claim 1 further
comprising:

identifying boundaries of the one or more settlements

based on spatial and spectral parameters of proximate
superpixels.

5. The computer implemented method of claim 1 wherein
the superpixels clustering uses an enhanced segmentation
process comprising:

determining a proximity of superpixels; and

determining a best match of superpixels using statistics.

6. The computer-implemented method of claim 5 wherein
the statistics include entropy.

7. The computer-implemented method of claim 1 wherein
the clusters of superpixels correspond to estimated areas of
human settlement.

8. A non-transitory computer-readable medium compris-
ing instructions stored thereon for identifying features in
imagery, the instructions, when executed on a processor,
perform the steps of:

receiving an image;

grouping selected pixels of the image into a plurality of

superpixels;

storing in memory a delineation of the superpixels;

analyzing at least two or more of the plurality of super-

pixels, the superpixels having an entropy, and the
analyzing including determining an indication of the
entropy;

storing in memory an indication of the amount of entropy

for each of the analyzed superpixels;
identifying superpixels based on an amount of entropy;
identifying clusters of superpixels based on both (1) the
indication of the amount of entropy for each of the
analyzed superpixels and (2) superpixels that are proxi-
mate in location, to produce identified clusters;

storing data delineating the identified clusters in memory,
the clusters representing only a portion of the image;

determining whether a cluster density exceeds a prede-
termined value as a factor in identifying the clusters;

clipping the image to only include the identified groups of
superpixels having the predetermined cluster density
and entropy;

analyzing statistical parameters of the clipped image;

analyzing geometric factors of the clipped image;
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determining one or more settlements based on the statis-
tical parameters and geometric factors of the superpix-
els; and

identifying a shape and area of the one or more settle-
ments based on the statistical parameters and geometric
factors of the clipped image.

9. The non-transitory computer-readable medium of claim

8 wherein the statistical parameters of the clipped image
include one or more of a contrast, mean, mode, median,
standard deviation, and entropy.

10. The non-transitory computer-readable medium of
claim 8 wherein the geometric factors include edge detec-
tion.

11. The non-transitory computer-readable medium of
claim 8 further comprising:

identifying boundaries of the one or more settlements
based on spatial and spectral parameters of proximate
superpixels.

12. The non-transitory computer-readable medium of
claim 8 wherein the superpixels clustering uses an enhanced
segmentation process comprising:

determining a proximity of superpixels; and

determining a best match of superpixels using statistics.

13. The non-transitory computer-readable medium
method of claim 12 wherein the statistics include entropy.

14. A system for identifying features in imagery, a
memory:

a processor;

a non-transitory computer-readable medium comprising
instructions stored thereon, the instructions, when
executed on the processor, perform the steps of:

receiving an image;
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grouping selected pixels of the image into a plurality of
superpixels;

storing in the memory a delineation of the superpixels;

analyzing at least two or more of the plurality of super-
pixels, the superpixels having an entropy, and the
analyzing including determining an indication of the
entropy;

storing in the memory an indication of the amount of
entropy for each of the analyzed superpixels;

identifying superpixels based on an amount of entropy;

identifying clusters of superpixels based on both (1) the
indication of the amount of entropy for each of the
analyzed superpixels and (2) superpixels that are proxi-
mate in location to produce identified clusters;

storing data delineating the identified clusters in the
memory, the clusters representing only a portion of the
image;

determining whether a cluster density exceeds a prede-
termined value as a factor in identifying the clusters;

clipping the image to only include the identified groups of
superpixels having the predetermined cluster density
and entropy;

analyzing statistical parameters of the clipped image;

analyzing geometric factors of the clipped image;

determining one or more settlements based on the statis-
tical parameters and geometric factors of the superpix-
els; and

identifying a shape and area of the one or more settle-
ments based on the statistical parameters and geometric
factors of the clipped image.
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